编者按:AI正在蚕食一切。很多人开始担心将来自己的工作会被机器替代。这一天未必到来的那么快。但是机器当你的老板的可能性却会越来越高。《机器人是老板》的作者、连续创业者Artur Kiulian探讨了这方面的可能性,并开发了一个评估这种可能性的工具,想知道你将来会不会有个机器人老板吗?去评估一下看看吧。小工具地址在文末。

人工智能软件和机器人在模式识别、预测性分析、重负载计算以及处理重复作业方面很强。正因为有了这些能力,机器在很多职业和活动方面正在逐渐替代人类,引发了自动化对工作市场的影响的日益担忧。

目前大量有价值的工作都是由人来完成的——比如检查安保视频寻找嫌疑行为,确定车辆是否即将撞上行人,查找和排除网上骂人的帖子——这些事情人在不到一秒钟之内就能完成。这些任务准备可以自动化了。然而,这些任务往往要放在一个更大的业务流程背景下才适合;找出它们跟业务其他部分的关联也很重要

——吴恩达,最近刚刚推出了1.5亿美元的面向AI的风投机构

AI的威力无可争议,问题是自动化能走多远,它对员工、组织以及商业流程又会产生什么影响。一个主要问题是——AI会不会变成绝大多数员工的下一位老板?

大多数专家都同意在不久的将来绝大部分的工作都会部分或完全被自动化。实际上,这意味着员工要么完全被机器替代,要么开始跟机器合作,充当后者的助手、培训师或者下级。AI专家做出的部分预测是相当激进的。

比方说,麦肯锡得出结论说目前现有的AI技术可以对今天大家执行的45%活动进行自动化。这家咨询机构还预测未来10年约60种职业将会经历至少30%的自动化。

自动化场景

自动化的范围取决于技术可行性(员工在可以自动化的活动上所花费的时间占比),监管是否到位以及社会的接受度、经济利益和自动化的成本。

麦肯锡认为,管理别人和运用专业知识是最不容易受到自动化影响的活动。而更容易受到影响的任务包括利益攸关者互动、无法预测的体力工作(如建筑工、林业)。最后,最容易受到自动化影响的是可预测的手工作业,数据收集以及数据处理工作。

直觉上看,如果你保持受雇的话机器人会成为你的下一个老板。因此,在这种氛围下,就像无人驾驶或者自动交易那样,机器会成为自己的老板。比方说,在无人驾驶方面,卡车车队的活动会通过可在紧急情况下即时发送软件更新和安全补丁的空中系统(OTA)进行同步。显然,此类系统并不需要太多的人类干预也能顺畅工作。

人机通信的新形式,包括有AI引导的管理等,在AI与员工被结合到统筹商业流程的混合型公司中将变得更加可行。

第一个场景是机器承担了面向客户界面的角色,这种角色可以促进客户支持或商业分析等企业运营工作。执行廉洁消费者与人类顾问这一特殊任务的面向垂直领域的机器人就是这种模式的典型例子。

许多初创企业雇佣了所谓的聊天机器人训练师来评估聊天机器人的表现,并在出问题的时候插手干预。在这种模式下,人类员工对AI软件的作用是增强和辅助,后者利用其自然语言处理、分析、图像识别或其他机器学习功能来运行业务流程并作出重要决定。不过到最后还是由人类经理和员工说了算。

那么,机器人什么时候才会变成你的老板呢?

在决策严重依赖算法解决方案或者只要机器参与到管理员工和绩效评估的公司,AI很可能就会变成机器老板。据Gartner,到2018年全球将会由300万人由机器人监管。

机器老板已经在许多数据驱动型公司执行着重要任务。比方说,全球最大的对冲基金,监管着1600以美元资金的Bridgewater Associates(桥水联合基金)正在开发PriOS算法管理系统,他们要用这套系统来控制所有的基础业务流程和运作。这套系统负责了若干的关联任务,比如招聘和解雇员工,或者或相反看法进行打分,以解决团队的争端和分歧。这套AI系统背后的合理之处在于它完全排除了在投资决策当中感情和情绪的任何影响。

在银行和贷款经纪方面AI软件也有着良好的发展势头,他们利用机器来决定哪些客户有资格获得贷款。如果没有这类软件,抵押经纪就得把90%的时间花在审核申请上面。

而机器做这件事情可以更加高效,从而为经纪人向客户的咨询和建议工作腾出了时间。然而,大家日益担忧信用评估软件里面的机器学习算法会受到歧视性偏见的侵蚀。

公司还在借复杂图像识别软件之力,在人类主无法恰当衡量情况下来自动评估员工的表现。

比方说,机器老板可以跟踪Uber司机选择的轮偏转角来评估这位司机的驾驶技能和风格。类似地,在服务领域机器学习算法可以用来评估服务员的工作做得如何,办法是跟踪这些服务员在VIP客户面前笑容的灿烂程度如何。

算法已经在管理人了

并且我们还没怎么注意到这一点。

在许多构成所谓的零工经济的按需机动和送货服务中,AI软件负责重要的商业决策,规划以及绩效评估。在总部位于伦敦的食品外卖公司Deliveroo,大多数外卖员的行动都是由管理算法严格控制的。

如果某位外卖员拒绝订单,严格的算法就会惩罚他们。Deliveroo的算法系统仔细的监视着外卖员的表现,它会计算其平均“接单时间”,“行驶时间”以及“未分配订单数”。如果该外卖员的表现达不到服务水平协议,就有可能被系统屏蔽。

全球领先的共享打车服务Uber也采用了类似的算法过程。在Uber那里,一旦司机登录进系统,其接受打车请求的时间就只有10到20秒。如果连续错过3次订单,司机就会自动被踢出系统几分钟。如果频繁违背Uber的算法性政策,这位司机的账户可能就会被撤销。

在这些算法当中,Uber司机对Uber的Dynamic Pricing Model(动态定价模型)发生了抱怨。该模型会自动根据对Uber服务的总需求情况设置资费。因此,Uber司机的收入也会高度不稳定。Uber不公平的价格设定政策导致2016年司机加入了一场名为“Fight for $15”的示威游行,要求自己的服务要得到公平的报酬以及工会权利和社会福利。

正如这些例子说明那样,机器在以来于数据驱动系统、自动化分析以及算法性决策的企业是有可能成为老板的。当公司把决策的责任交给机器学习算法时,机器就自动变成了老板。

但与此同时,有些地方还不会受到机器人老板的影响——那就是错误决定会产生危险影响的领域。

医疗保健就是这样,因为保健专业人士的日常活动需要人类的专业知识以及跟病人的直接接触。尽管AI做出的医疗诊断可以为医生提供有价值的洞察分析,但最后的决定还得由保健专家来做,因为后者需要对机器的结论进行验证,确保其符合所有的道德规范和政策。

小工具

想知道你的工作由算法进行管理的可能性有多高吗?你可以来试试我开发的这个工具,它利用了公开的工作活动和职业数据,以及牛津大学的计算化研究:http://www.willrobotbemyboss.com/

原文链接:https://hackernoon.com/why-your-next-boss-will-be-a-robot-fbe6098de696

编译组出品。编辑:郝鹏程

 

你的下一个老板会是机器人吗?用这个小工具评估一下

发表评论

电子邮件地址不会被公开。 必填项已用*标注